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I INTRODUCTION

The purposes of this paper are to present estimates of the probability
distributions for the acquisition and program costs for the alternative
architectures discussed in the Architecture Comparative Evaluation Study
(ACES) [Ref 1], and to describe the procedures we used to develop them. In
our first pass through these evaluations, we will assume that the
distributions for the cost of R&D and Investment for an element have equal
risk and that all cost distributions are statistically independent. Later, we will
relax these assumptions.

PROBLEM DEFINTION

We are seeking a method for determining the probability distributions of
two kinds of system costs: acquisition costs and program costs. The
acquisition costs are defined as the costs of the R&D and Investment phases
on all the defense elements that are deployed with an architecture. The
program costs consists of the R&D costs on all the elements that are to be
deployed in the initial deployment, the Investment costs for all the elements
deployed in the initial deployment, and the R&D costs of the elements to be
deployed in the next phase of deployment. Thus the program costs include
all of the acquisitions costs for an initial deployment plus R&D on near term
follow-on elements not included initially.

The architectures are ballistic missile defense systems composed of the
following sensor, interceptor and battle management elements:

boost surveillance and tracking system (BSTS),

space surveillance and tracking system (SSTS),

space based interceptor (SBI) or Brilliant Pebbles (BP),
ground-based space surveillance and tracking system (GSTS),
midcourse ground-based radar (MGBR),

exoatmospheric reentry vehicle intercept system (ERIS),
terminal ground-based radar (TGBR),

high endoatmospheric intercept system (HEDI),

1 Dyer, JL. et al. "Architecture Comparative Evaluation Study (U)" Volume II, SPARTA
Technical Report, McLean, VA SECRET (March 3, 1989)




command, control and system operating and integrating functions
(CCSOIF),

system engineering and integration (SEI),

and launch (LCH).

The quantities and qualities of each of these elements, and the cost-
quantity estimating relationships are described in the ACES final report.

As we will use the term, the system costs for an architecture includes
only the costs for the full scale engineering development (R&D) and
deployment (Investment) phase; operations and support (O&S) costs are not
included.

INPUT DATA

The inputs to these evaluations of system cost were 1) the nominal costs
for each of two phases (R&D and Investment) for each of the elements to be
considered in the near term architectures (from ACES) and 2) the cost
distributions from the USAF for the combined costs (R&D plus Investment)
for three elements: BSTS, SSTS and SBI. We will use the ACES inputs as the
nominal costs (either expected values or 50% confidence values), and the
USAF data as the source of the cost risk distributions about those nominal
values.

In ACES, we have nominal cost estimates for the appropriate quantities
of each element in each of its two phases. We do not have cost risk
assessments for all of the elements contained in each of these architectures.
The three element cost risk estimates that we do have are presented in
Figures 1 through 3 for the BSTS, SSTS and SBI respectively. The nominal
values in the figures are assumed to have been superseded by the ACES data.
However, we can and will use the nature of the underlying distributions for
estimating the cost risk. We will determine the characteristics of the
distributions from curve fits to the data we take off of these three figures.

We will develop total system costs (total R&D and Investment) from
these input data for three different sets of premises: 1) the element costs are
log-normally distributed and the nominal (ACES) costs are estimates at the
50% confidence level, 2) the element costs are log-normally distributed and




the nominal costs are expected value estimates, and 3) the costs are normally
distributed and the nominal cost are most likely cost estimates.
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A summary of the results and our recommended estimates are in the

next section.

Section II covers the detailed results for the log-normal

distribution assumption sets. Section III covers the detailed results for the
normal distribution assumption set. In the last section, Section IV, we will
examine the sensitivity to our assumptions on risk associated with different
program phases and on element independence. A summary of the pertinent
features of the log-normal and the normal distribution is presented in

Appendix A.




1 SUMMARY

In this section, we present three sets of results. In the first subsection, we
present the system acquisition and program costs for all five architectures
assuming that the cost distributions for each element are independent and
that the underlying distributions in each phase for each element are not only
independent, but have the same distribution. In the second subsection, we
examine a change in the nature of the distribution of risks between Ré&D and
Investment phases. In the third subsection, we present the results for the case
where distributions for both phases and elements are correlated. For the costs
of the architectures, we recommend using the program costs listed in Table 5.
Though these costs are derived without rigorous estimation of the correlation
between programs, assuming a ccnplete correlation does model the feature
that all elements of an architecture operating at the required performance
levels in the necessary quantities are needed to make an architecture meet its
mission.

RESULTS FOR INDEPENDENT DISTRIBUTIONS

In Tables 1 through 3, we present the system acquisition and program
costs we have developed for each architecture from each of our sets of
premises on the nature of the distributions. As we should expect, all three
system costs distributions are relatively tight (low variances) and are
relatively close in value to one another. The tightness should be expected as a
result of the assumption of independence of the distributions of costs for each
phase and for each element. The closeness should be expected because the
fitted underlying distributions are approximately equal. (We note that the
nominal program reserve - an added cost - is not included here.)

Table 1 presents the estimates we made assuming that: 1) the cost
distributions for each phase for each element have log-normal distributions,
2) that both the R&D and Investment phases have equivalent cost risk
distributions (equal coefficients of variation), and 3) that the input cost data
(nominal values) for each phase for each element were equivalent to cost
estimates made at the 50% confidence level, The first assumption
distinguishes the results of Table 1 from Table 3. The last assumption
distinguishes the results of Table 1 from those of Table 2.




Table 2 presents the estimates we made assuming that: 1) the cost
distributions for each phase for each element have log-normal distributions,
2) that both the R&D and Investment phases have equivalent cost risk
distributions, and 3) that the input cost data (nominal values) for each phase
for each element were equivalent to expected value cost estimates.

Table 3 presents the estimates we made assuming that: 1) the cost
distributions for each phase for each element have normal distributions, 2)
that both the R&D and Investment phases have equivalent cost risk
distributions, and 3) that the input cost data for each phase for each element
were equivalent to expected value cost estimates (equivalent to 50%
confidence estimates for normal distributions).

By the assumption that the input cost data are 50% confidence values the
results in Table 1 are biased away from the sum of the nominal costs that is
generally cited as the cost of the system. The bias also makes both the lower
and upper bounds higher than we see in either Tables 2 or 3. The results of
Tables 2 and 3 are essentially equivalent to one another. Except for roundoff
differences, the two distributions are everywhere the same.

RESULTS FOR ALTERNATIVE RISK DISTRIBUTIONS

The tightness of the distributions seems to belie the intuitive notion that
cost estimates should have large ranges when the systems are only now
reaching maturity ar are still demanding advances in technology. We
considered two alternative assumptions: one on the split of the risk between
R&D and Investment and the other on independence. Changing the split in
risks did not change the essential nature of the distributions. Following the
relative sizes of the TRACE accounts in US Army cost estimates, we assumed
that R&D has three times the relative risk as the Investment phase. We
modeled this by having the coefficient of variation of the R&D be three times
the coefficient of variation for the Investment. For the DAB Architecture, it
increased the estimated costs by 1B$.




Table 1
Summary of Acquisition and Program Costs Derived
with Independent Log-Normal Distributions
Assuming Nominal Inputs are 50% Confidence Values of Cost

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 45 62 66 65 37
0.50 47 64 70 72 39
0.80 49 66 74 79 40
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 55 69 69 75 46
0.50 58 71 73 81 48
0.80 60 74 77 88 50
Table 2

Summary of Acquisition and Program Costs Derived with
Independent Log-Normal Distributions
Assuming Nominal Inputs are Expected Values of Cost

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 44 61 64 64 36
0.50 46 63 68 70 38
0.80 48 65 72 77 40
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 54 68 67 73 46
0.50 57 70 71 79 47
0.80 59 73 75 86 49
8




Table 3
Summary of Acquisition and Program Costs Derived
with Independent Normal Distributions

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 4 61 64 64 36
0.50 46 63 68 70 38
0.80 48 65 72 77 40
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 54 68 68 73 46
0.50 57 70 72 80 48
0.80 59 73 75 86 50

RESULTS FOR DEPENDENT DISTRIBUTIONS

We considered two kinds of interdependence. The first was a
dependence between the costs for the R&D phase and for the Investment
phase; the second was a dependence between the costs for the different
element programs. Of the two, the latter was the more important. We did
nct have a basis for estimating the covariance between phases or between
elements. In order to proceed, we assumed two values of the correlation
coe’ficient, one for between phases and one for between program elements,
and we assumed that these correlation coefficients were everywhere the
same. We then examined the system costs as a function of changing values
in those two coefficients. Thus, the results can only be considered indicative.
Of course, the upper bound on the costs cannot be higher than when we
assume all program elements are completely correlated. Assuming
underlying normal distributions, Table 4 presents the system cost results for
the assumption that the correlation coefficient both between program phases
and between program elements was 0.50. As expected, these costs are higher
than those presented in Table 3, but only by about 5%.




Table 4
Summary of Acquisition and Program Costs Derived
with Normal Distributions and Assuming Program Phases and
Elements are Correlated with Coefficient 0.50

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 42 58 61 61 34
0.50 46 63 68 70 38
0.80 51 68 75 80 42
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 51 64 64 70 43
0.50 57 70 72 80 48
0.80 62 77 79 90 52

In Table 5, we present the same data for the case where the programs are
completely correlated (the coefficient of correlation between phases is still at
0.50). After adding in the program reserve amount, these are the costs we
recommend using for estimates of the costs of the ACES Architectures.

The upper bounds (80% Confidence Values) on the system acquisition
costs as a function of the assumed correlation coefficient between elements
are compared for each of the five architectures in Figure 4. While the
correlation coefficient is not known, its distribution of values will
undoubtedly lie somewhere between the bounds given. In the bar graph of
Figure 5, we present the system acquisition costs so that both upper (80%) and
lower (20%) confidence bounds for correlated and uncorrelated cases and the
expected value can be seen. The larger and the smaller values for the upper
and lower confidence bounds are for the completely correlated case; the
smaller and larger values for the upper and lower confidence bounds are for
the completely independent case. The same kinds of data are presented in
Figures 6 and 7 for the system program costs. The correlated cost
uncertainties for the DAB Architecture are approximately 14%.

10




Table 5
Summary of Acquisition and Program Costs
when Program Elements are Completly Correlated

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 41 57 59 59 33
0.50 46 63 68 70 38
0.80 52 69 77 82 43
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 49 62 62 67 41
0.50 57 70 72 80 48
0.80 64 79 82 92 54

We note in passing that evaluating the completely correlated case with
the log-normal distributions instead of with the normal distributions will
yield very similar results

11
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I APPROACH USING LOG-NORMAL DISTRIBUTIONS

The assumptions implicit in our approach in this section of the report
are the following:

The costs (random variables) for each phase (R&D and Investment) for
each element in an architecture are independent.

The probability function for the cost of a phase for an element has a log-
normal distribution.

The nature of the cost distribution is constant by phase, that is, the cost
risk distribution (probability of a cost) for an element in R&D is similar to the
risk distribution for deployment (investment). We will represent this
assumption by saying that the coefficient of variation remains constant.

The elements are divided into three categories: those with high risk,
those with moderate risk, and those with low risk. Within a constant risk
category, the coefficient of variation is the same.

Important relationships for the log-normal density function are given in
Table 6.

Table 6.
Log-Normal Distribution Definitions

Density Function
fx(x) = exp [-1/2 (Inx - p)2/62] / [V(2r) ox ] 0<X<oo
HL>o0
>0
Cumulative Distribution Function

Fx(x) = @[ (Inx-y) / ¢ ]

Fifty Percent Confidence Value
Xs50 = exp(p)

Expected Value

EX) =explp +(1/262]
Variance

VAR(X) = { exp[20?] - exp[62?] } exp[2u)
Mode
x" = exp (1 - 62)
Coefficient of Variation
VVAR(X)/E(X) = V[exp(62) - 1]

16




In order to fit the log-normal distribution to the input data, we must find
values for p and 6. On each figure of Figures 1-3, we are given the 50%
confidence value. Its natural logarithm is equal to u. To find the value of o,
we derived the normal equation for its regression only to find, after
simplifications, the intractable result

3D/d¢ =0
n
= X [®(8;} - Pi] exp(-(1/2)8;2) 6;

i=1
where D is the sum of the squares of the differences between the log-normal
distribution to be fit and the probabilities that were taken from the curves, ©;
is equal to [log(xj - p]/ 0, x; is the ith cost point and P; is the corresponding
probability from the figure. To find the value of ¢, the optimal estimate to
minimize the differences, we searched over the values of 0. The results are
given in Table 7. The data extracted from Figures 1-3 and used in the
calculations leading to the values of ¢ are contained in Appendix B.

Table 7
Log-Normal Fits to Input Data

System mn c VVAR/E (x)
BSTS In(7.9) 0.12308 0.12355
SSTS In(8.7) 0.18352 0.18508
SBI In(14.3324) 0.28108 0.28672

Figure 8 compares the log-normal curve fit to the input data extracted
from Figure 1 for the BSTS. Figures 9 and 10 similarly compare the curve fits
to the data of Figures 2 and 3 for the SSTS and the SBI respectively.

We have characterized these three systems as representing three classes
of risk: low, moderate and medium. We have applied these risk categories to
each of the elements in the set of architectures investigated in ACES. The
results of that application are given in Table 8.
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Table 8
Risk Categories Assumed

System System

Low Risk Category Moderate Risk Category
BSTS SSTS
GBR GSTS
ERIS
SEI High Risk Category
LAUNCH SBI

CC/SOIF

Using these data and assumptions, we can now develop the total costs
for each of the architectures. For the log-normal distributions, we have two
procedures. In the first, we will take the input costs we have for R&D and
Investment to be the 50% confidence estimates for each phase for each of the
elements, devise their distributions according to the risk categories, and then
sum those costs according to the rules we have developed for estimating the
convolution of log-normal distributions. In the second procedure, we will
take the input costs we have for R&D and Investment to be the expected
value estimates for each phase for each element, and then proceed in the
same manner as above.

In the first procedure, for each phase for the ith element, we assume that
the inputs are Csg, the 50% confidence cost for the respective R&D and
investment costs, and cv, the coefficient of variation for that element. We
derive the parameters for the corresponding log-normal distribution as

Hi = In(Csp)
o; = VIn(1+cv2)

For example, if the nominal costs for BSTS R&D are 5.4B$, if that 5.4B$ is

equivalenced to Csg, and if it is in a low risk category, then

p1 = In(5.4) = 1.6864 Derived from Nominal Costs
cv = 0.12308 Taken from Risk Category
o1 = V[n(1+cv2)) Derived from cv

0.1226

In the second procedure, for each phase for the ith element, we assume
that the inputs are E(X), the expected value for the respective R&D and
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investment costs, and cv, the coefficient of variation for that element. We
derive the parameters for the corresponding log-normal distribution as

o; = VIn(1+cv2)

T In[E(X)] - 6;2/2

For example, if the nominal costs for BSTS R&D are 5.4B$, if that 5.4B$
is equivalenced to E(X), and if it is in a low risk category, then

cv = 0.12308 Taken from Risk Category
o1 = Yln(1+cv2)] Derived from cv
0.1226
p1 = In(54)-02/2 Derived from Nominal Cosis
= 1.6789

For the log-normal distribution, we approximate the convolutions by
assuming that the convolution will yield (see Appendix A for justificiation of
this approximation) a log-normal like distribution characterized by
parameters whose values are derived from the sum of the expected values
and variances. The algorithm is given as follows:

E(X) = X E(X})

o = In[E(X)]

B = VAR(X) = X VAR(X;)
p =1/2{40 - In[B + exp(2a)]}
o = V[2(o-)]

where a and B are intermediate values, and pu and o are the parameters of the
resultant log-normal distribution for the total system costs.

We will use this algorithm to combine the costs for the R&D phase and
the Investment phase, and to combine the costs for each of the elements. We
will first develop the acquisition costs as the sum of the R&D and Investment
costs for the elements that are deployed in an architecture. Then, we will
develop the program costs as the sum of the R&D costs for all of the elements
being considered for Phase One, either for immediate or slightly later
deployment, and the investment costs for the elements to be immediately
deployed.




RESULTS

Assuming the first procedure, that is, nominal costs are 50% confidence
estimates, Table 9 presents a summary of the costs for each of the
architectures. The supporting data tables presenting the sums of expected
values and variances are illustrated in Appendix C for the DAB Architecture.

Table 9
Summary of Acquisition and Program Costs Derived
with Independent Log-Normal Distributions
Assuming Inputs are 50% Confidence Values of Cost

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 45 62 66 65 37
0.50 47 64 70 72 39
0.80 49 66 74 79 40
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 55 69 69 75 46
0.50 58 71 73 81 48
0.80 60 74 77 88 50

Assuming the second procedure, that is, nominal costs are expected
values, Table 10 presents the results of our calculations. The supporting data
tables presenting the sums of expected values and variances are illustrated in
Appendix D for the DAB Architecture.




Table 10
Summary of Acquisition and Program Costs Derived
with Independent Log-Normal Distributions
Assuming Inputs are Expected Values of Cost

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 44 61 64 64 36
0.50 46 63 68 70 38
0.80 48 65 72 77 40
Program Costs
Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 54 68 67 73 46
0.50 57 70 71 79 47
0.80 59 73 75 86 49
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IV APPROACH USING NORMAL DISTRIBUTIONS

In this section, we derive the system costs assuming normal
distributions as the distributions underlying the risk assessment data. The
assumptions implicit in our approach are the following:

The costs (random variables) for each phase (R&D and Investment) for
each element in an architecture are independent.

The probability function for the cost of a phase for an element has a
normal distribution.

The nature of the cost distribution is constant by phase. We will
represent this assumption by saying that the coefficient of variation remains
constant.

The elements are divided into three categories: those with high risk,
those with moderate risk, and those with low risk. Within a constant risk
category, the coefficient of variation is the same.

Important relationships for the normal density function are given in
Table 11.

Table 11
Normal Distribution Definitions

Density Function
fx(x) = exp [(1/2) (x - w)2/62] / [V2R) 6] w0 < x < o0
-00 u < oo
G>0
Cumulative Distribution Function

Fx(x) =®[ (x-p) / o]
Fifty Percent Confidence Value

Xs0 = |
Expected Value
E(X)=p
Variance
VAR(X) = o2
Mode
x*=p

Coefficient of Variation
VVAR(X)/E(X) = 6/p




R R BE EE Sy A Ny e B B e

In order to fit the normal distribution to the input data, we must find
values of L and 6. On each figure of Figures 1-3, we are given the 50%
confidence value. It is equal to p. To find the value of o, we derived the
normal equation for its regression only to find, after simplifications, the
intractable result

dD/3c =0
n

= X [®(8y) - Pil exp(-(1/2)8;2)

i=1

where D is the sum of the squares of the differences between the normal
distribution to be fit and the probabilities that were taken from the curves,8;
is equal to [xj - pl/o, x; is the ith cost point and P; is the corresponding
probability from the figure. To find the value of o*, the optimal estimate to
minimize the differences, we searched over the values of 6. The results are
given in Table 12. The data extracted from Figures 1-3 and used in the
calculations leading to the values of ¢ are contained in Appendix B.

Table 12
Normal Fits to Input Data
System n c c/u
BSTS 79 0.97241 0.1231
SSTS 8.7 1.58450 0.1821
SBI 14.3324 3.99300 0.2786

Figure 11 compares the normal curve fit to the input data extracted from
Figure 1 for the BSTS. Figures 12 and 13 similarly compare the curve fits to
the data of Figures 2 and 3 for the SSTS and the SBI respectively.

Using these data and assumptions, we can now develop the total costs
for each of the architectures. For each phase for the ith element, we assume
that the inputs are Csg, the 50% confidence cost for the respective R&D and
investment costs, and cv, the coefficient of variation for that element. We
derive the parameters for the corresponding normal distribution as

Hi = Cso
Gi = Mj CV
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For example, if the nominal costs for BSTS R&D are 5.4B$, if that 5.4B$ is
equivalenced to Csg, and if it is in a low risk category, then

H1 = 54 Derived from Nominal Costs
cv = 01231 Taken from Risk Category
01 = Hicv Derived from cv

= 0.6647

For the normal distribution, we have a closed form expression for the
convolutions, which yield a normal distribution with the values for the two
parameters being

1 =EX) = X EX))
02 = VAR(X) = T VAR(Xj)

We will use this algorithm to combine the costs for the R&D phase and
the Investment phase, and to combine the costs for each of the elements.

Table 13 presents the results of our calculations. The supporting data
tables illustrating the sums of expected values and variances are presented in
Appendix E for the DAB Architecture.

Table 13
Summary of Acquisition and Program Costs Derived
with Independent Normal Distributions

Acquisition Costs

Probability
Architectures
ERIS ERIS/HEDI DAB SBICV BP
0.20 44 61 64 64 36
0.50 46 63 68 70 38
0.80 48 65 72 77 40
Program Costs
Probability
Architectures
ERIS ERIS/HEDI  DAB SBICV BP
0.20 54 68 68 73 46
0.50 57 70 72 80 48
0.80 59 73 75 86 50
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A\ SENSITIVITIES TO ASSUMPTIONS

Recognizing that the range of values about the 50% confidence values is
a lot less than we are accustomed to seeing, we began to examine some of our
assumptions.

DIFFERENTIATING RISK ACCORDING TO PROGRAM PHASE

The first assumption we will investigate is the assumption that the risk
distribution for R&D and Investment is the same. We will examine here the
consequences of making an alternative assumption.

In developing a cost breakdown, the USA generally assigns some 15% of
R&D and some 5% of the investment costs to risk mitigation. We will use
these estimates to derive the variances of R&D and Investment programs
from the coefficients of variations obtained from the USAF input data on
total programs. (See Figures 1 through 3.) The problem is to find the
standard deviations for an R&D program, o1, and Investment program, o2,
when we know the expected values, u and p3 of these two phases, and when
we know the coefficient of variation of the entire program. Seeing as how
our disparate assumptions about the underlying distributions hardly affect
our answers, we will work with the normal distribution since that is the
easiest one to use. We can now state the problem as

Find o1 and o7 given y1, u2, cv, and the relationships
cv=0/H

M1+ U2
and

c1/m =302/
where the unsubscripted variables apply to the combined program data.

A little algebra yields

c1=302u1/ W
and

fov (W1 + p)ual?

622 =
9 p12 + pp?
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Replacing these different estimates of variation for the estimates that
assumed both phases of a program were equal yields no significant difference.
In Appendix F, we present the results for the DAB Architecture assuming the
values of o1 and 02 defined above. Table 14 compares those data with the
data obtained from Table 13.
Table 14
Comparison of Architecture Cost Ranges for

Two Different Assumptions About the Split Between
Program Phase Cost Variations

Acquisition Costs  Assuming Assuming

Prob 'Equal Risks 3:1 Risk Ratio Differences
0.20 64.46 63.36 1.10
0.50 68.31 68.31 0.00
0.80 72.16 73.26 -1.10
Program Costs Assuming Assuming

Prob Equal Risks 3:1 Risk Ratio Differences
0.20 67.71 66.58 1.13
0.50 71.59 71.59 0.00
0.80 ) 75.47 76.60 -1.13

COMPUTING COST ESTIMATES ASSUMING PROGRAM INTER-
DEPENDENCIES

The second assumption we will investigate is independence. In the
earlier sections, we assumed that the costs for the phases of a program
element, that is, the cost distributions for the R&D and Investment phases,
were independent one from another, and that all of the program elements
were also independent one from another. It is to these assumptions that we
owe the tractability of analysis of the log-normal distributions and the ease of
the analysis for the normal distribution. Here, in this subsection, we examine
possible implications of interdependencies by assuming that the program
phases and the program elements may not be independent.

IMPACT OF CORRELATION WITHIN A PROGRAM, Assuming that the
underlying distributions are normal, but correlated, we derive the
distribution for the sum of the R&D cost and the Investment cost and factor
that into the total system costs. To do so, we further assume that the
correlation coefficient, p, is known. If we let X; be the random R&D costs,
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normally distributed with mean p; and variance oy and X; be the random
Investment costs, normally distributed with mean p3 and variance o5, and Z;,
their sum for the ith program element, then Z; is normally distributed with
parameters

E (Z;) =1 + |2
VAR (Zj) = 612 + 022 + 2p6102

Provided that we make the assumption that we know the mean and the
variance of the distributions for the costs of the two phases, (actually
determined for this exercise by analogy to Figures 1-3 and through the
coefficient of variation) then we can first compute the distributions of the
costs for the individual programs, taking into account the correlations, and
then compute the total system cost distributions (assuming still that the
program elements are independent). For the DAB Architecture, the 20%
confident, 50% confident and 80% confident costs are presented in Figure 14
as a function of the assumed correlation coefficient. (In generating this plot,
note that we have assumed that the correlation coefficient between R&D and
Investment is the same for all program elements.)

IMPACT OF PROGRAM CORRELATION. Assuming that the underlying
program element distributions are normal, but that they are correlated with
one another, we can also derive the distribution for the total system costs. To
do this we must know the covariance matrix, that is, the correlations of the
cost distributions for each program element with the cost distributions of each
of the other program elements in the system. As above, we will assume that
we know the covariance matrix. For our sensitivity analysis, we will assume
that the correlation coefficient between any two programs is identical to p,
that is, COV[Zi,Zj] = poicj. If we let Z be the total system costs, then Z is
normally distributed with parameters

n

E(Z) =X E(Z)
i=o
n n
VAR(Z) =X X COVIZ, Zgl

i=o j=o
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Figure 14. Program Costs for DAB Architecture




where n is the number of program elements whose costs are to be summed
for the acquisition or program costs.

For the DAB Architecture, we plot in Figure 15 the 20%, 50% and 80%
confident costs for the total acquisition costs and in Figure 16 the same
quantities for the total program costs.

For the calculations in Figures 15 and 16, we have assumed that the
correlation coefficient between R&D and Investment cost distributions is
equal to 0.50.

Just as a further point of reference, consider the following comparison.
For a correlation coefficient of unity for the correlation between programs and
a correlation coefficient of 0.5 for the correlation between R&D and
Investment, the program costs were estimated at 81B$. If we assumed unity
for both correlation coefficients, the program costs were estimated at 82.1B$.

Just as a bound to use with these results, consider the cost of the
acquisition for the DAB architecture, derived assuming that the total
acquisition costs had the same coefficient of variation we assumed for the SBI
program. That cv was 0.2786. Given the mean value of the acquisition as
68B$%, the standard deviation should be 18.95 B$. AT 20% confidence, the
acquisition costs we calculate should be more than 52.1B$. AT 80%
confidence, the acquisition costs should be less than 84.0B$. Obviously, the
50% confident number is still 68B$. Note that the costs we have derived in
Figure 15 for the acquisition costs for the fully correlated case are within those
bounds.

COST ESTIMATES WITH LARGER VARIANCES. We note that the costs
bounds just developed, assuming full correlations between programs, are still
tight relative to what might be expected. For a program that is at this stage of
its development and still requires advances in technology, some might expect
that the cost ranges should be broader than that, for example, the upper value
of the range being something like twice the lower value. However, the
procedure we have applied here seems consistent with what we know, and
uses our current best estimates of the variations,
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We have experimented (made mistakes in our inputs) with larger
variances for the log-normal distributions and obtained instances where the
range of values (ratio of 80% confident values to 20% confident values) did
have close to a factor of two between them (for the DAB architecture, we
manufactured a case where the lower -- 20% confidence -- was 62B$ and the
upper bound -- 80% confidence - was 109B$). However, the variances we
used to get those results were much larger than any we are currently deriving
from Figures 1-3. Just to illustrate, the coefficient of variation we used to
obtain the almost 2:1 range with the log-normal distribution were, for the low
risk elements, 0.1215, for the moderate risk elements, 0.3031, and for the high
risk elements, 1.2258. These can be compared with the coefficient of variation
we are now using with the log-normal distribution: 0.12136 for the low risk
elements, 0.1851 for the moderate risk elements, and 0.2867 for the high risk
elements. There had to be a factor of two increase in the variation for the
moderate risk elements and a factor of four increase in the variation of the
high risk elements for us to find a value close to the 2:1 ratio between the
upper and lower bounds.

If the cost ranges are to reflect a higher ratio than we have found here in
this report, then the input estimates of variation must increase. This, of
course, will not set well with program managers. On the other hand, the cost
variations we include do not include the many sources of variation that come
from outside a program manager's control, but still typically increase the costs
of a program element: politically inspired delays, mission changes and threat
modifications. Incorporating these variations, if we could, would
significantly increase the variation, and the range of estimates we would find.

38




Appendix A

Log-Normal Distributions

A-1




Appendix A

Log-Normal Distributions

The purpose of this appendix is to present some features of the log-normal
distribution. The notation is taken from Ref A-1.

Though there are a number of alternative expressions for the density

function of the log-normal distribution, the form of the log-normal density
function we will use here is given by

fx(x) = exp [<(1/2) (Inx - p)2/62] / [V2r) oX] O <x <0

This density function is also a function of the values of the two parameters, p
and o, whose features we will explore below.

The log-normal cumulative distribution function is then
X

Fx(x) = S exp [-(1/2) (ny - 1)2/62] dy / [ V(2r) oy ]
o

We can transform this equation by substituting

u=(ny-p)/o
du = dy /(oy)

to obtain
(Inx-p)/c
Fx(x) = S exp[-(1/2u21du / V(2m)
which is equivalent to

Fx(x) = ® [(Inx-y) / o]

where ®(x) is the cumulative standard normal function.

The Expected Value of x, E(X), is given by

E(X) = S x exp [-(1/2) (Inx - u)2/62) dx / [ V(2x) ox ]
o




Again substituting
u=(nx-u)/oc
du = dx /(ox)

exp(ou + ) = x

we obtain
E(X) = g : exp(ou+u) expl-(1/2)u2] du / V(2x)
E(X) = S :exp[-(l/z)( u2 -20u - 2)] du / V(2r)
E(X) = S :: exp[-(1/2)( u2 -26u + 62 - 62 - 2)] du / V(2r)
E(X) = S :exp[-(l /2) {(u-6)2- (62 + 2u)}] du / V(2r)

E(X) = S expl-(1/2) (u - 6)2] expl(1/2)(c2 + 2w)] du / V(2m)

o0

E(X) = expl(1/2)(a2 + Zu)JS expl-(1/2) (u - 6)2) du / V(2r)

-00

E(X) = exp[(1/2)(62 + 2)]

The Second Moment of x, E(X2), is given by

E(X?) = S x2 exp [-(1/2) (Inx - p)2/6?] dx / [V(2r) ox ]
o




Again substituting

u=(nx-p)/c
du = dx /(ox)
exp(ou + Y1) = x

exp[2(cu+u)] expl-(1/2)u?] du / V(2r)

expl-(1/2){u2-4ou+402-462-4p}] du / V(2r)

E(X?) = S expl-(1/2){u2-4cu-4p}] du / V(2x)
S expl-(1/2)(u-26)2] exp[262+2u] du / V(2x)

E(X?) = exp{202+2u] S exp[-(1/2)(u-26)2] du / V(2r)

E(X2) = exp[202+2y]

The Variance of X is given by

VAR(X) = E(X2) - EX(X)

= exp[262+2y] - exp[o? + 2]
= {exp[202] - expl0?] } exp [2u]

The Mode of the distribution is obtained by finding the value of x which
makes the derivative of the density function equal to zero. Setting

f'x(x) = - V2r) {(Inx-p)/ 6 + o} exp[-(1/2)(Inx-p)2/62] = 0




*»
we have for the mode at x

(Inx*-p)/o=-0
or

x" = exp (i - 02)

The coefficient of variation is defined as the ratio of the standard
deviation (VVAR(X)) to the expected value (E(X)). We are using it here as a
standard deviation normalized by the mean. We illustrate in Figure A-1 the
similarity of five different log-normal distributions which have the the same

coefficient of variation, but have with values of exp(i) ranging from 5 to 9 in
steps of one. The similarity between the resulting cumulative distributions is

obvious. Though the ¢ parameter remains constant, the variance does not: it
increases as [ increases.

Using the multiplicative property of exponents, the square root of the
variance becomes

VVAR(X) = exp(p)lexp(202) - exp(c)]1/?

Expressing the expected value as a product of two exponential terms, we
can rewrite it as

E(X) = exp(y) exp(6?/2) = exp(p) lexp(a2)]1/?

The ratio of the two equations above yields for the coefficient of
variation, cv,

VVAR(X)/E(X) = { [exp(26?) - exp(02) ] exp(-02) }1/?
= [exp(oz) -1 ](1/2) =cv

This equation can be turned around to provide a value for ¢ if the
coefficient of variation is known.

¢ = VIn(1+cv2)
This equation does not have an explicit dependence on .

We note in Table A-1 the value of the Jog normal cumulative
distribution function for several of the key values of x.
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Table A-1
Log-Normal Function Values

x Fx(x)
E(X)= ™(-6/2)
explp+(1/2)0?)

Mode(X)= d(-0)
exp(p-62)

exp(p-1.28010) 0.10
exp(n-0.83910) 0.20
exp(-0.52160) 0.30
exp(u-0.25130) 0.40
exp(p) 0.50
exp(n+0.83910) 0.80
exp(pu+1.64450) 0.95
exp(u+2.32760) 0.99

If I have two independent random variables with log-normal
distributions, say Xji and X3, and I want to determine the distribution of the
sum of two log-normals, Z = X1+X3, I could proceed with either the method
of convolutions or of characteristic functicns. However, since I could make
neither of these methods yield tractable expressions, I have fallen back on the
following approximation: I have assumed that the resulting distribution has a

log-normal distribution with parameters B and ¢ determined from the
distributions of the variables to be added together. I now need only to
determine those values.

Since I have assumed that the distributions are independent, I know the
following to be true

E(Z) = E(X1) + E(X2)
VAR(Z) = VAR(X1) + VAR(X?2)

Since I have assumed that all distributions are log-normal, I also know
the dependencies of each of these quantities on their respective parameters.
Thus, for the sum of two log-normal distributions, I can write

E(Z) = exp(u + (1/2)62) = exp(p1 + (1/2)612) + exp(pa+ (1/2)622) = A

A-7




VAR(Z) = exp(2)[exp(262)-exp(c?)]
= exp(2p1)[exp(2612)-exp(612)]
+ exp(2u2)[exp(2622)-exp(622)]
=B

The subscripted variables are assumed known and fixed and thus the
expressions yield constants, A and B, from which we must determine p and o.

We can write ¢ in terms of y by taking the logarithm of both sides of the first
equation and manipulating the result:

‘Infexp(n + (1/2)02)] = In[A] =&

L+(1/202=a
02 =2(a - p)

Substituting for 62 in the expression for the variance of Z we obtain
exp(2p) [ exp{4(a-p)} - exp2(a-p)} 1 = B
Multiplying through by the exponent outside the brackets on the left
exp{4a-2u} - exp{2a} = B
Taking the logarithm of both sides
{4a-2p} = In(B + exp(2a})
Manipulating the resulting expression
K =(1/2[4a - In(p + exp{2a}) ]
With y known, we can also solve for .

We illustrate the quality of the approximation with several examples of
distributions of sums of log-normals. Let us assume the two log-normal

variables have distributions with the parameters given in Table A-2.




Table A-2
Parameter Values for First Example
Parameter X1 X2

Ki In8 In5
Gi 1 1
E(X) 13.19 824
VAR(X) 298.93 116.77

A 21.43

o 3.06

p 415.70

M 2743 =1n15.52

c 0.803

To test the quality of the approximation, we show in Figure A-2 the
convolution of the two distributions (computed numerically) with the curve
generated by the approximation. As it turns out, the approximation looks
fair. This quality of fit suggests that there is something very much like a log-
normal result to the convolution.

We tried a second example as well. The parameters are given in Table
A-3. The two products, one a numerical convolution and the other the
product of our approximation, are presented in Figure A-3. Again, the fit is
very close.

Table A-3
Parameter Values for Second Example
Parameter X1 X2
Mi In8 In5
i 0.50 0.50
E(X) 9.06 5.67
VAR(X) 23.34 9.12
A 14.73
oa 2.69
B 32.46
1) 2.620 =1In13.739
c 0.373
A-9




1

Finally, in Table A-4, we present an example that approximates some of
the values assumed for o; in the body of the report. In Figure A-4, we
compare the approximation with the numerical convolution. The result is a
perfect fit within the resolution of the graph.

Table A-4
Parameter Values for Third Example

Parameter X1 X2

Ki In8 In5

Oi 0.10 0.10

E(X) 8.04 5.03

VAR(X) 0.65 0.25

A 13.06

a 2.57

B 0.90

M 2.567 = In13.03

c 0.077

The three examples given above suggest (and do no more than that) that
our approximation is good enough for an estimate of the convolution of two
log-normal distributions. When we are adding the results from several, we
will assume that the approximation holds good. However, we could also
assume that the sum of a large number of log-normal distributions will result
in an approximately normal distribution by the central limit theorem.

The relationship between the log-normal and the normal distribution
becomes apparent through the transformation

z = Inx
By Ref A-2, we have that if

z=g(x)
then

f2(z) = T fx()/ 1 g'(xi) |

where x; are all the real roots associated with the value of z and where
g'(x) is the derivative of g(x) with respect to x.
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In our case, we have only one real root, namely,
exp(z) = x
Noting that g'(x) = 1/x and that 1/ 1g'(x) | is equal to x, we have

f2(z) = x fx(exp(2))

x exp [(1/2) (In{exp(2)} - w)2/6?] / [V(2r) ox ]
= expl-(1/2)(z-p)2/6?] / N2n)o -0 <Z oo

As everyone will recognize, this is the normal distribution function. We

also have
E(Z)=p
VAR(Z) = 62
Mode(Z) = p
cv=0/pn

It should be noted that the parameters of the transformed normal
density function are readily convertible into the parameters of the log-normal
density function; however, the natures of the parameters are very different
from one another.
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Appendix B
Curve Fits to Input Data

The following tables contain the data used in the calculations given in
the report. Table B-1 presents the fitting parameters for the data taken from
Figures 1 through 3 of the main body of the report. Table B-2 presents the
data from Figure 1, the plot of probability versus system cost for the BSTS, and
compares the curve fits for both the log-normal and the normal curve
distributions. Table B-3 presents the same data for the SSTS and Table B-4
presents the same data for the SBL

Table B-1
Curve Fit Parameters
Log-Normal Normal
System Tl c H c
BSTS In(7.9) 0.12308 79 0.97241
SSTS In(8.7) 0.18352 8.7 1.5845
SBI In(14.33) 0.28108 14.33 3.99300
Table B-2
Curve Fit Data for BSTS
Log-Normal Normal

Probability  Cost Cost Cost

0.00 6.59 - -

0.10 6.89 6.75 6.60

0.20 7.16 7.12 7.08

0.30 7.40 7.41 7.39

0.40 7.64 7.66 7.66

0.50 7.88 7.90 7.90

0.60 8.15 8.15 8.14

0.70 8.42 8.42 8.41

0.80 8.90 8.76 8.72

0.90 9.35 9.25 9.14
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Table B-3

Curve Fit Data for SSTS
Log-Normal Normal
Probability Cost Cost Cost
0.00 6.00 - -
0.10 6.84 6.88 6.67
0.20 7.35 7.46 7.37
0.30 7.83 7.91 7.87
0.40 8.22 8.31 8.30
0.50 8.70 8.70 8.70
0.60 9.06 : 9.11 9.10
0.70 9.50 9.57 9.53
0.80 10.05 10.15 10.03
0.90 10.80 11.00 10.73
Table B-4
Curve Fit Data for SBI
Log-Normal Normal
Probability Cost Cost Cost

0.05 9.10 9.03 7.77
0.10 10.00 10.00 9.22
0.20 11.20 11.32 10.98
0.30 12.30 12.38 12.25
0.35 12.95 12.87 12.80
0.40 13.50 13.35 13.33
0.50 14.33 14.33 14.33
0.60 15.00 15.38 15.34
0.70 16.90 16.60 16.42
0.80 18.30 18.14 17.68
0.90 20.20 20.54 19.44
0.95 21.50 22.75 20.90




Appendix C

RESULTS FOR LOG-NORMAL DISTRIBUTION FITS
FOR DAB ARCHITECTURE
ASSUMING INPUT DATA ARE 50% CONFIDENCE VALUES
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Appendix D
RESULTS FOR LOG-NORMAL DISTRIBUTION FITS

FOR DAB ARCHITECTURE
ASSUMING INPUT DATA ARE EXPECTED VALUES
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| = | == R&D---—-—— e -
| System | CV | E(X) | MU SIG EX VARX
| == mm oo | ==mm e | = e
| BSTS | 0.1236 | 5.40 | 1.679 0.123 5.400 0.445
| SSTS | 0.1851 | 3.80 | 1.318 0.184 3.799 0.494
| SBI | 0.2867 | 4.10 | 1.370 0.281 4.0093 1.378
| GSTS | 0.1851 | 1.30 | 0.245 0.184 1.300 0.058
| MGBR | 0.1236 | 1.30 | 0,255 0.123 1.300 0.026
| ERIS | 0.1236 | 2,40 | 0.868 0.123 2.400 0.088
| CCSOIF | 0.2867 | 4.00 | 1.345 0.281 3.994 1.311
! SEI | 0.1236 | 3.70 | 1.301 0.123 3.700 0.209
| LCH | 0.1236 | 3.40 | 1.216 0.123 3.400 0.176
| I I |
I | I |
I | I f
! [ [ [
[=—=m e |—————— e
|  TOTALS | | 29.40 | 29.385 4.185
l [ I [ 3.380
| | I I ALPHA BETA
I I | I
| f | | 3.378 0.070
' __________________________________________________________________
e e I
|ACQUISTION COSTS FOR DAB ARCHITECTURE |
| I
I e INV-==———mmm e o |
| System | EX | MU SIG EX VARX |
[ ~——mmm e | ====— e m e |
f BSTS | 2.60 | 0.948 0.123 2.600 0.103 |
| SSTS | 5.40 | 1.670 0.184 5.400 0.999 |
| SBI | 13.60 | 2.571 0.281 13.600 15.205 |
] GSTS | 2.00 | 0.676 0.184 2.000 0.137 |
| MGBR | 2.00 | 0.686 0.123 2.000 0.061 |
| ERIS | 3.51 | 1.248 0.123 3.510 0.188 |
|  CCSOIF | 3.30 | 1.154 0.281 3.300 0.895 |
! SEI | 1.30 | 0.255 0.123 1.300 0.026 |
| LCH | 5.20 | 1.641 0.123 5.200 0.413 |
I I | |
I | ! I
I | [ I
| I | I
| ==—==———- | ~=~—————- It e e ke e |
TOTALS | 38.91 | 38.910 18,027

| | 3.661

| |

I |

I |

I
I
|
|
I




|=——————— | =—————- TOTALS---- |
| System | EX VARX |
|-—=————-- | == |
i BSTS | 8.000 0.548 | PROB COSTRD COSTINV COSTTOT
| SSTS | 9.199 1.493 | 0.1 26.82 33.65 62.38
| SBI | 17.693 16.583 | 0.2 27.65 35.31 64.30
| GSTS | 3.300 0.195 | 0.3 28.27 36.55 65.73
| MGBR | 3.300 0.087 | 0.4 28.81 37.64 66.96
i ERIS | 5.910 0.276 | 0.5 29.31 38.68 68.13
| CCSOIF | 7.294 2.206 | 0.6 29.83 39.75 69.32
| SEI | 5.000 0.235 | 0.7 30.40 40.94 70.63
| LCH | 8.600 0.589 | 0.8 31.07 42 .38 72.19
| [ | 0.9 32.04 44 .46 74.42
| ! J
| | |
f I |
jmmmmm——— == |
TOTALS | 68.295 22.212

|

|

|

|

|
I
I
I
I
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|
| I
I I
| | 0. | 5. | 1. 0. 5. 0. [
| | 0. | 3. | 1. 0. 3. 0. |
| | 0. | 4, | 1. 0. 4. 1. |
] | 0. | 1. | 0. 0. 1. 0. f
[ | 0. [ 1. [ 0. 0. 1. 0. |
| | O. | 2. | 0. 0. 2. 0. |
} [ 0. | 1. | 0. 0. 1. 0. i
I f 0. | 1. | 0. 0. 1. 0. |
| CCSOIF | 0.2867 | 4,25 | 1.407 0.281 4.250 1.485 |
| SEI | 0.1236 | 4.11 | 1.406 0.123 4,110 0.258 |
| LCH | 0.1236 | 3.40 | 1.216 0.123 3.400 0.176 |
| I | | |
I | ! [ |
e ittt bttt i e ettt b D I
|  TOTALS | 32.66 | 32.660 4.465 |
| | | 3.486 |
I I ! ALPHA BETA |
| I | [
| I | 3.484 0.065 |
ittt bttt ettt bbbt Bt S [
fommmmm s e e e - |
| PROGRAM COPROGRAM COSTS FOR DAB ARCHITECTURE |
| [
| ==m—————— [ INV-———c e |
| System | EX | MU SIG EX VARX |
i | === |==———m—mmmm e e |
J BSTS | 2.60 | 0.948 0.123 2.600 0.103 |
| SSTS | 5.40 | 1.670 0.184 5.400 0.899 |
[ SBI | 13.60 | 2.571 0.281 13.600 15.205 |
| GSTS | 2.00 | 0.676 0.184 2.000 0.137 |
] MGBR | 1.80 | 0.580 0.123 1.800 0.049 |
| ERIS | 3.51 | 1.248 0.123 3.510 0.188 |
| TGBR | 0.00 | 0.000 0.000 0.000 0.000 |
| HEDI | 0.00 | 0.000 0.000 0.000 0.000 |
| CCSOIF | 3.32 | 1.160 0.281 3.320 0.906 |
| SEI | 1.30 | 0.255% 0.123 1.300 0.026 |
| LCH | 5.20 | 1.641 0.123 5.200 0.413 |
I | | |
f | | |
=== | ===~ TRttt det et I
TOTALS | 38.73 | 38.730 18.027
| | 3.657
I I
I I
| I




| = | —=—=——- TOTALS---- |
| System | EX VARX |
e [==—m—m I
| BSTS | 8.000 0.548 | PROB COSTRD COSTINV COSTTOT
| SSTS | 9.200 1.494 | 0.1 30.00 33.47 65.43
| SBI | 17.700 16.587 | 0.2 30.87 35.13 67.38
| GSTS | 3.300 0.195 | 0.3 31.51 36.37 68.81
| MGBR | 3.100 0.075 | 0.4 32.07 37.46 70.05
| ERIS | 5.910 0.276 | 0.5 32.59 38.50 71.23
| TGBR | 1.100 0.018 | 0.6 33.13 39.57 72.43
| HEDI | 1.500 0.034 | 0.7 33.71 40.76 73.74
| CCSOIF | 7.570 2,391 | 0.8 34.41 42.20 75.31
| SEI | 5.410 0.284 | 0.9 35.40 44 .28 77.55
| LCH | 8.600 0.589 |
| | I
| | I
| =m——————- == I
| TOTALS | 71.390 22.492 |
| | 4,268 [
I | |
| | MU 4.2660 |
I I |
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Appendix E

RESULTS FOR NORMAL DISTRIBUTION FITS
FOR DAB ARCHITECTURE
ASSUMING INPUT DATA ARE EXPECTED VALUES
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SSTS

|

!

| SBI
| GSTS
| MGBR
| ERIS
| CCSOIF
| SEI
| LCH
I

|

I

I

| System

] ___________________

|

I

I

|

[

I ERIS
| CCSOIF
| SEI
| LCH
I

|

I

[

I
I
I
I
|

l
!
l 5.
80 | 3.800
.10 | 4.100
.30 | 1.300
.30 | 1.300
40 | 2.400
00 | 4.000
70 | 3.700
40 | 3.400
I
I
|
I
I
40 | 29.400
I
I
|
[
ARCHITECTURE
EX VARX
__________________ [
600 0.102
400 0.967
600 4.356
000 0.133
000 0.061
510 0.187
300 0.845
300 0.026
200 0.410
910 4.134




MU 68.3100
SIG 4.5940

[===————=- o= TOTALS---- |
| System | EX VARX |
== | == |
| BSTS | 8.000 0.544 | PROB COSTRD COSTINV COSTTOT
| SSTS | 9.200 1.446 | 0.1 26.83 33.62 62.43
| SBI | 17.700 15.661 | 0.2 27.72 35.44 64.46
[ GSTS | 3.300 0.189 | 0.3 28.35 36.75 65.91
| MGER | 3.300 0.086 | 0.4 28.90 37.87 67.16
| ERIS | 5.910 0.274 | 0.5 29.40 38.91 68.31
| CCSOIF | 7.300 2,087 | 0.6 29.90 39.95 69.46
I SEI | 5.000 0.233 | 0.7 30.45 41.07 70.71
I LCH | 8.600 0.585 | 0.8 31.08 42.38 72.16
[ f | 0.9 31.97 44.20 74.19
I I |
I I I
! | !
| ===m=——-- [===mmm |
TOTALS | 68.310 4.594

|

|

!

I
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I
j System | Ccv | C50 | EX VARX
| o= e | === i
| BSTS | 0.1231 | 5.40 | 5.400 0.442
! SSTS | 0.1821 | 3.80 | 3.800 0.479
| SBI | 0.2786 | 4.10 | 4.100 1.305
| GSTS | 0.1821 | 1.30 | 1.300 0.056
| MGBR | 0.1231 | 1.30 | 1.300 0.026
| ERIS | 0.1231 | 2.40 | 2.400 0.087
| TGBR | 0.1231 | 1.10 | 1.100 0.018
| HEDI | 0.1231 | 1.50 | 1.500 0.034
| CCSQIF | 0.2786 | 4.25 | 4.250 1.402
| SEI | 0.1231 | 4.11 | 4.110 0.256
| LCH | 0.1231 | 3.40 | 3.400 0.175
| I f |
| | | I
[-——mm e e e el Se—-——-
TOTALS 32.66 | 32.660 2.069
|
I
|
[

I
| System | C50 | EX VARX :
mm—m————= jm=——————- | =—mmm o m
| BSTS | 2.60 | 2.600 0.102 |
| SSTS | 5.40 | 5.400 0.967 |
| SBI | 13.60 | 13.600 14.356 |
[ GSTS | 2.00 | 2.000 0.133 |
| MGBR | 2.00 | 2.000 0.061 |
| ERIS | 3.51 | 3.510 0.187 |
| TGBR | 0.00 | 0.000 0.000 |
I HEDI | 0.00 | 0.000 0.000 |
| CCSOIF | 3.32 | 3.320 0.856 |
I SEI | 1.30 | 1.300 0.026 |
| LCH | 5.20 | 5.200 0.416 |
I | I !
[ I I I
jom—r———- | ===————-- | —w==—mmm |

TOTALS | 38.93 | 38.930 4,135

I |

I I

| I

I I




MU 71.5900
SIG 4.6235

|——~—————- | ==———-- TOTALS---- |
|  System | EX VARX |
| ===~ | === I
{ BSTS | 8.000 0.544 | PROB COSTRD COSTINV COSTTOT
| SSTS | 9.200 1.446 | 0.1 30.01 33.64 65.67
| SBI | 17.700 15.661 | 0.2 30.92 35.46 67.71
I GSTS | 3.300 0.189 | 0.3 31.58 36.77 69.18
| MGBR | 3.300 0.086 | 0.4 32.14 37.89 70.43
| ERIS | 5.910 0.274 | 0.5 32.66 38.93 71.59
| TGBR | 1.100 0.018 | 0.6 33.18 39.97 72.75
| HEDI | 1.500 0.034 | 0.7 33.74 41.09 74.00
| CCSOIF | 7.570 2.258 | 0.8 34.40 42.40 75.47
[ SEI | 5.410 0.282 | 0.9 35.31 44 .22 77.51
| LCH | 8.600 0.585 |
| I |
| ! I
|mm——————— mmmm e I
TOTALS | 71.590 4.623

I

I

I

{
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Appendix F

SENSITIVITY TO RISK
SPLIT BETWEEN PHASES
FOR DAB ARCHITECTURE
FOR NORMAL DISTRIBUTION FITS
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Appendix G

RESULTS FOR CORRELATED
NORMAL DISTRIBUTION FITS
FOR ALL ARCHITECTURES
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MU&D SIGR&D

[ === [—————————————— R&D-—-~———-—=—-—-
| System | cv | C50 | EX VARX
[m=mmmm e e [==m—————- [===—mm o
| BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTs | 0.1821 | 3.80 | 3.800 0.479
| SBI | 0.2786 | 4.10 | 4,100 1.305
| GSTS | 0.1821 | 1.30 | 1.300 0.056
[ MGBR | 0.1231 | 1.30 | 1.300 0.026
| ERIS | 0.1231 | 2.40 | 2.400 0.087
| CCSOIF | 0.2786 | 4.00 | 4.000 1.242
I SEI | 0.1231 | 3.70 | 3.700 0.207
| LCH | 0.1231 | 3.40 | 3.400 0.175
| I I I
| ! | I
I I I |
| ! i |
|~ [===—mm e
TOTALS 29.40 | 29.730 2.005
I
|
I
I

fmmm———— e INV--~——=————- |
| System | C50 | EX VARX |
= | === I
| BSTS | 2.60 | 2.600 0.102 |
I SSTS | 5.40 | 5.400 0.967 |
( SBI | 13.60 | 13.8600 14.356 |
| GSTS | 2.00 | 2.000 0.133 |
I MGBR | 2.00 | 2.000 0.061 |
| ERIS | 3.51 | 3.510 0.187 |
|  CCSOIF | 3.30 | 3.300 0.845 |
| SEI | 1.30 | 1.300 0.026 |
| LCH | 5.20 | 5.200 0.410 |
| ! | I
I | | I
I I | l
| | ! |
| === | === = e |
TOTALS | 38.91 | 38.910 4,134

! |

I I

| |

| :

I
MUINV  SIGINV |
!
l
|




il e
|ACQUISITION COSTS FOR DAB ARCHITECTURE
I
[—-—m————— [===———- TOTALS---- |[Correlation between Phases 0.50
| System | EX VARX |
[===—=—— [===——m I
| BSTS | 8.000 0.757 | PROB COSTRD COSTINV COSTTOT
| SS8TS | 9.200 2.126 | 0.1 26.83 33.62 57.39
| SBI | 17.700 19.989 | 0.2 27.72 35.44 61.15
[ GSTS | 3.300 0.275 | 0.3 28.35 36.75 63.86
| MGBR | 3.300 0.126 | 0.4 28.90 37.87 66.17
| ERIS | 5.910 0.402 | 0.5 29.40 38.91 68.31
| CCSOIF | 7.300 3.112 | 0.6 29.90 39.95 70.45
i SEI | 5.000 0.306 | 0.7 30.45 41.07 72.76
| LCH | 8.600 0.853 | 0.8 31.08 42 .38 75.47
| | I 0.9 31.97 44.20 79.23
| I I
i | I
| | I
=== [ ==~ |
| TOTALS | 68.310 5.286 |
I I MU SIG |
| I I
I ! MU 68.3100 |
| I I

SIG 8.5294
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32.660 2.069

| ~— = m e | ==vmm e R&D-~-—=-=~-
{  System | Cv | C50 | EX VARX
e e jrm——————— | ===
[ BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTS | 0.1821 | 3.80 | 3.800 0.479
I SBI | 0.2786 | 4.10 | 4.100 1.305
I GSTS | 0.1821 | 1.30 | 1.300 0.056
| MGBR | 0.1231 | 1.30 | 1.300 0.026
| ERIS | 0.1231 | 2.40 | 2,400 0.087
| TGBR | 0.1231 | 1.10 | 1.100 0.018
| HEDI | 0.1231 | 1.50 | 1.500 0.034
| CCSOIF | 0.2786 | 4.25 | 4.250 1.402
| SEI | 0.1231 | 4,11 | 4.110 0.256
| LCH | 0.1231 | 3.40 | 3.400 0.175
I | I I
| I I I

I

|

[

I

f

I

SEI
LCH

l
|
I
|
!
I
!
I
!
I
I
CCSOIF |
I
l
|
|
!
| 38.930 4.135
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jm=———————- j——————- TOTALS---- |
| System | EX VARX |
e = I
| BSTS | 8,000 0.757 | PROB COSTRD COSTINV COSTTOT
I SSTS | 9.200 2.126 | 0.1 30.01 33.64 59.72
! SBI | 17.700 19.989 | 0.2 30.92 35.46 63.81
| GSTS | 3.300 0.275 | 0.3 31.58 36.77 66.75
! MGBR | 3.300 0.126 | 0.4 32.14 37.89 69.26
| ERIS | 5.910 0.402 | 0.5 32.66 38.93 71.59
| TGBR | 1.100 0.018 | 0.6 33.18 39.97 73.92
| HEDI | 1.500 0.034 | 0.7 33.74 41.09 76.43
| CCSOIF | 7.570 3.353 | 0.8 34.40 42.40 79.37
[ SEI | 5.410 0.363 | 0.9 35.31 44 .22 83.46
J LCH | 8.600 0.853 |
I I |
! ! I
| -====- | -=mm oo mm oo |
| TOTALS | 71.590 5.319 |
| | MU SIG |
I I I
| | MU 71.5900 |
I I I

SIG 9.2740




Correlation Between Phases 0.50

Correlation

Between ---~ Acquisition Costs —=~==—-w---- Program Costs =—-----

Programs 20% 50% 80% 20% 50% 80%
0.0 63.87 68.31 72.75 67.13 71.59 76.05
0.1 €3.21 68.31 73.41 66.29 71.59 76.89
0.2 62.63 68.31 73.99 65.58 71.59 77.60
0.3 62.10 68.31 74.52 64.93 71.59 78.25
0.4 61.61 68.31 75.01 64.35 71.59 78.83
0.5 61.15 68.31 75.47 63.81 71.59 79.37
0.6 60.73 68.31 75.89 63.30 71.59 79.88
0.7 60.32 68.31 76.30 62.83 71.59 80.35
0.8 59.93 68.31 76.69 62.37 71.59 80.81
0.9 59.57 68.31 77.05 61.94 71.59 81.24
1.0 59.21 68.31 77.41 61.53 71.59 81.65
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MUR&D SIGR&D

[ =—m e | == R&D-==——==-—=-
| System | Ccv | C50 | EX VARX
R ettt o === [==mmmmm e
| BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTS | 0.1821 | 3.80 | 3.800 0.479
[ GSTS | 0.1821 | 1.30 | 1.300 0.056
| MGBR | 0.1231 | 1.30 | 1.300 0.026
| ERIS | 0.1231 | 2.40 | 2.400 0.087
| CCSOIF | 0.2786 | 3.98 | 3.980 1.229
| SEI | 0.1231 | 2.81 | 2.810 0.120
[ LCH | 0.1231 | 1.30 | 1.300 0.026
! | | !
! | I I
| J I !
I I | I
! I | |
e b e e
TOTALS 22.29 | 22.290 1.570
I
[
|
|

| === INV-—~—mme |
| System | C50 | EX VARX |
| === [ === I
| BSTS | 2.60 | 2.600 0.102 |
| SSTS | 4.32 | 4,320 0.619 |
( GSTS | 2.75 | 2.750 0.251 |
| MGBR | 2.00 | 2.000 0.061 |
| ERIS | 6.02 | 6.020 0.549 |
| CCSOIF | 3.90 | 3.900 1.181 |
| SEI | 0.82 | 0.820 0.010 |
| LCH | 1.60 | 1.600 0.039 |
I I | I
| ! | |
I I I I
| | | !
I | | |
== | == | === |
TOTALS | 24.01 | 24.010 1.6717

! !

I I

I I

| |

|
MUINV  SIGINV |
[
I
|




|

l | == | ——————- TOTALS---- |Correlation between Phases 0.50
| System | EX VARX |
| ~==—==—-- | === I

I | BSTS | 8.000 0.757 | PROB COSTRD COSTINV COSTTOT
I SSTS | 8.120 1.642 | 0.1 20.28 21.86 39.86
| GSTS | 4.050 0.425 | 0.2 20.97 22.60 42.08
| MGBR | 3.300 0.126 | 0.3 21.47 23.14 43.68
[ ERIS | 8.420 0.855 | 0.4 21.90 23.59 45.04
|  CCSOIF | 7.880 3.615 | 0.5 22.29 24.01 46.30
I SEI | 3.630 0.165 | 0.6 22.68 24,43 47.56
| LCH | 2.900 0.096 | 0.7 23.11 24.88 48.92
| | I 0.8 23.61 25.42 50.52
| | | 0.9 24.30 26.16 52.74
| J I
| I I
| | I
[===————— | === |
| TOTALS | 46.300 2.771 |
i | MU SIG |
| I I
I ! MU 46.3000 |
I | I

SIG 5.0295




|=—————————— - o R&D-==~—-==—-
| System | CVv | C50 | EX VARX
[ === === fm=mmm e
I BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTS | 0.1821 | 3.80 | 3.800 0.479
| SBI { 0.2786 | 4.10 | 4.100 1.305
| GSTS | 0.1821 | 1.30 | 1.300 0.056
| MGBR | 0.1231 | 1.30 | 1.300 0.026
| ERIS | 0.1231 | 2.40 | 2.400 0.087
| TGBR | 0.1231 | 1.10 | 1.100 0.018
| HEDI | 0.1231 | 1.50 | 1.500 0.034
| CCSOIF | 0.2786 | 4.25 | 4.250 1.402
| SEI | 0.1231 | 4.11 | 4.110 0.256
| LCH | 0.1231 | 3.40 | 3.400 0.175
I I I I
I I f I
[==m e [===———m e
TOTALS 32.66 | 32.660 2.069
I
I
I
I

| === | ————————————— INV-=-———— |
] System | C50 | EX VARX |
| =—==————- f=——————— [ ==~mm e |
| BSTS | 2.60 | 2.600 0.102 |
| SSTS | 4.32 | 4,320 0.619 |
| SBI | 0.00 | 0.000 0.000 |
| GSTS | 2.75 | 2.750 0.251 |
| MGBR | 2.00 | 2.000 0.061 |
| ERIS | 6.02 | 6.020 0.549 |
| TGBR | 0.00 | 0.000 0.000 |
| HEDI | 0.00 | 0.000 0.000 |
| CCSOIF | 3.90 | 3.900 1.181 |
| SEI | 0.82 | 0.820 0.010 |
| LCH | 1 °0 | 1.600 0.039 |
I I | |
| | I [
| ==~====— | === | === |
TOTALS | 24.01 1 24.010 1.677

| |

| |

| |

| |




[ ===~ | ———~--- TOTALS---- |
| System | EX VARX |
| =~======- | ==mmmmmmmmmmo oo |
| BSTS | 8.000 0.757 | PROB COSTRD COSTINV COSTTOT
| SSTS | 8.120 1.642 | 0.1 30.01 21.86 48.38
| SBI | 4.100 1.305 | 0.2 30.92 22.60 51.23
| GSTS | 4.050 0.425 | 0.3 31.58 23.14 53.29
| MGBR | 3.300 0.126 | 0.4 32.14 23.59 55.04
| ERIS | 8.120 0.855 | 0.5 32.66 24.01 56.67
I TGBR | 1.100 0.018 | 0.6 33.18 24.43 58.30
| HEDI | 1.500 0.034 | 0.7 33.74 24.88 60.05
| CCSOIF | 8.150 3.869 | 0.8 34.40 25.42 62.11
| SEI | 4.930 0.317 | 0.9 35.31 26.16 64.96
I LCH | 5.000 0.296 |
| | I
I [ I
| ===—=———- | === |
| TOTALS | 56.670 3.106 |
| | MU SIG |
I I |
l I MU 56.6700 |
I I |

SIG 6.4788
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Correlation Between Phases 0.50

Correlation

Between ---- Acquisition Costs -~-—--==~-- Program Costs -=---

Programs 20% 50% 80% 20% 50% 80%
0.0 43.97 46.3 48.63 54.06 56.67 59.28
0.1 43,49 46.3 49.11 53.30 56.67 60.04
0.2 43.08 46.3 49.52 52.68 56.67 60.66
0.3 42.72 46.3 49.88 52.15 56.67 61.19
0.4 42 .38 46.3 50.22 51.67 56.67 61.67
0.5 42,08 46.3 50.52 51.23 56.67 62.11
0.6 41.80 46.3 50.80 50.83 56.67 62.51
0.7 41.53 46.3 51.07 50.45 56.67 62.89
0.8 41,27 46.3 51.33 50.10 56.67 63.24
0.9 41.03 46.3 51.57 49.76 56.67 63.58
1.0 40.80 46.3 51.80 49.44 56.67 63.90
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MUR&D SIGR&D

| m—mmre e e | ==———————————— R&D--=-=———==—-
| System | Ccv | C50 | EX VARX
= e | ~====—== i
| BSTS | 0.1231 | 5.40 | 5.400 0.442
! SSTS | 0.1821 | 3.80 | 3.800 0.479
| GSTS | 0.1821 | 1.30 | 1.300 0.056
| MGBR | 0.1231 | 1.30 | 1.300 0.026
[ ERIS | 0.1231 | 2.40 | 2.400 0.087
| TGBR | 0.1231 | 1.10 | 1.100 0.018
! HEDI | 0.1231 | 1.50 | 1.500 0.034
f CCSOIF | 0..786 | 4.23 | 4.230 1.389
| SEI | 0.1231 | 3.22 | 3.220 0.157
| LCH | 0.1231 | 1.30 | 1.300 0.026
| | | |
| I I I
| | I |
= [==mmmmmmm e
TOTALS 25.55 | 25.550 1.647
|
I
|
I

R T INV-—~=m——m - |
| System | C50 | EX VARX |
f=m—mmm e IR i I
| BSTS | 2.60 | 2.600 0.102 |
} SSTS | 4.32 | 4.320 0.619 |
| GSTS | 2.75 | 2.750 0.251 |
| MGBR | 2.00 | 2.000 0.061 |
! ERIS | 5.08 | 5.080 0.391 |
| TGBR | 6.16 | 6.160 0.575 |
| HEDI | 5.86 | 5.860 0.520 |
| CCSOIF | 5.93 | 5.830 2.729 |
| SEI | 1.26 | 1.260 0.024 |
I LCH | 1.60 | 1.600 0.039 |
| ! I !
| | | |
! I I |
| === s | === —mmmmmm——- --—|
TOTALS | 37.56 | 37.560 2.305

[ I

| |

I [

I I
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EX VARX |

|
|
|
| BSTS | 8.000 0.757 | PROB COSTRD COSTINV COSTTOT
\ SSTS | 8.120 1.642 | 0.1 23.44 34.61 55.75
| GSTS | 4.050 0.425 | 0.2 24.17 35.63 58.29
| MGBR |  3.300 0.126 | 0.3 24.69 36.36 60.11
" | ERIS | 7.480 0.663 | 0.4 25.14 36.98 61.67
| TGBR | 7.260 0.696 | 0.5 25.55 37.56 63.11
| HEDI | 7.360 0.688 | 0.6 25.96 38.14 64.55
| CCSOIF | 10.160 6.065 | 0.7 26.41 38.76 66.11
l | SEI | 4.480 0.243 | 0.8 26.93 39.49 67.93
| LCH | 2.900 0.096 | 0.9 27.66 40.51 70.47
| | |
| | |
l | |
| === [—mmmmmmmm e I
| TOTALS | 63.110 3.376 |
| | MU SIG |
| | |
| | MU 63.1100 |
| | |

SIG 5.7460
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—— o | ——— - —— — - ——————

I

!

|
! BSTS | 0.1231 | 5.40 5.400 0.442
| SSTS | 0.1821 | 3.80 3.800 0.479
| SBI | 0.2786 | 4.10 4.100 1.305
! GSTS | 0.1821 | 1.30 1.300 0.056
| MGBR | 0.1231 | 1.30 1.300 0.026
| ERIS | 0.1231 | 2.40 2.400 0.087
| TGBR | 0.1231 | 1.10 1.100 0.018
| HEDI | 0.1231 | 1.50 1.500 0.034
| CCSOIF | 0.2786 | 4. 4.250 1.402
| SEI | 0.1231 | 4.11 4,110 0.256
| LCH | 0.1231 | 3.40 3.400 0.175
| | |
| | |

32.660 2.069

—— i e

|

I

[

|

I

I

|

I

|

|
HEDI |
CCSOIF |
SEI |
LCH |
|

I

[

|

[

|

|

|

37.560 2.305
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| =———=———= | === TOTALS---- |
| System | EX VARX |
| —=====—-= == I
| BSTS | 8.000 0.757 | PROB COSTRD COSTINV COSTTOT
I SSTS | 8.120 1.642 | 0.1 30.01 34.61 60.26
| SBI | 4.100 1.305 | 0.2 30.92 35.63 63.69
| GSTS | 4.050 0.425 | 0.3 31.58 36.36 66.16
| MGBR | 3.300 0.126 | 0.4 32.14 36.98 68.27
| ERIS | 7.480 0.663 | 0.5 32.66 37.56 70.22
J TGBR | 7.260 0.696 | 0.6 33.18 38.14 72.17
| HEDI | 7.360 0.688 | 0.7 33.74 38.76 74.28
} CCSOIF | 10.180 6.088 | 0.8 34.40 39.49 76.75
I SEI | 5.370 0.359 | 0.9 35.31 40.51 80.18
| LCH | 5.000 0.296 |
I I |
I [ |
|========= | —===———— |
| TOTALS | 70.220 3.612 |
| | MU SIG |
I I I
I l MU 70.2200 |
I I I

SIG 7.7772
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Correlation Between Phases 0.50

Correlation
Between ---- Acquisition Costs —-=-—-—===---- Program Costs —-----
Programs 20% 50% 80% 20% 50% 80%

‘ .0 60.29 63.11 65.93 67.19 70.22 73.25
. 59.79 63.11 66.43 66.24 70.22 74.20
. 59.36 63.11 66.86 65.47 70.22 74.97
. 58.97 63.11 67.25 64.81 70.22 75.63
. 58.62 63.11 67.60 64.23 70.22 76.21
. 58.29 63.11 67.93 63.69 70.22 76.75
. 57.98 63.11 68.24 63.20 70.22 77.24
. 57.69 63.11 68.53 62.74 70.22 77.70
. 57.42 63.11 68.80 62.31 70.22 78.13
. 57.15 63.11 69.07 61.89 70.22 78.55
. 56.90 63.11 69.32 61.50 70.22 78.94
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MUR&D SIGR&D

e | m—mmmmmmmmmem e R&D---———--==-
| System | Ccv | C50 | EX VARX
[~=—mmm e | === f=—m—mm -
| BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTS | 0.1821 | 3.80 | 3.800 0.479
| SBI | 0.2786 | 3.50 | 3.500 0.951
| CCSOIF | 0.2786 | 3.52 | 3.520 0.962
| SEI | 0.1231 | 2.83 | 2.830 0.121
[ LCH | 0.1231 | 3.40 | 3.400 0.175
| I | I
I I I I
| I | I
I I | |
| I I I
I I ! I
| | I I
[~=mmmm e e e == e
TOTALS 22.45 | 22.450 1.769
|
I
|
I

MUINV SIGINV

|- INV-—~———————- |
] System | C50 | EX VARX |
| === mmmm e ome | == oo mm oo oo |
[ BSTS | 2.60 | 2.600 0.102 |
| SSTS | 4.32 | 4,320 0.619 |
[ SBI | 1.10 | 1.100 0.094 |
f CCSOIF | 1.97 | 1.970 0.301 |
| SEI |  0.55 | 0.550  0.005 |
! LCH | 4.91 | 4.910 0.365 |
| ! | |
! | ! !
| ! | |
! ! ! !
| | | |
| | | |
| ! | |
|--==m=mm | --=mmmem | ==mmmmm e e oo !
TOTALS | 15.45 | 15.450 1.219

| |

| |

| |

| I
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!

e ———— |m—————— TOTALS---- |Correlation between Phases 0.50
| System | EX VARX |
| =====——- == e |
| BSTS | 8.000 0.757 | PROB COSTRD COS&TINV COSTTOT
| SSTS | 8.120 1.642 | 0.1 20.19 13.89 32.06
| SBI | 4.600 1.344 | 0.2 20.97 14.43 34.07
] CCSOIF | 5.490 1.801 | 0.3 21.53 14.81 35.52
| SEI | 3.380 0.150 | 0.4 22.01 15.14 36.75
| LCH | 8.310 0.793 | 0.5 22.45 15.45 37.90
| | | 0.6 22.89 15.76 39.05
| | | 0.7 23.37 16.09 40.28
! | I 0.8 23.93 16.47 41,73
| | [ 0.9 24.71 17.01 43.74
I I |
I | |
| I I
| === | mmmm e |
|  TOTALS | 37.900 2.547 |
! | MU SIG |
| J |
| | MU 37.9000 |
[ ! |

SIG 4.5637
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o ———  ———————— —————

1.981

——————————————————— |=-—=-—-—-—~-——==-==-R&D
Systen | Cv | C50 | EX
------------------- j—=m—————
BSTS | 0.1231 | 5.40 | 5.400
SSTS | 0.1821 | 3.80 | 3.800
SBI | 0.2786 | 3.50 | 3.500
GSTS | 0.1821 | 1.30 | 1.300
MGBR | 0.1231 | 1.30 | 1.°20
ERIS | 0.1231 | 2.40 | 2.400
TGBR | 0.1231 | 1.10 | 1.100
HEDI | 0.1231 | 1.50 | 1.500
CCSOIF | 0.2786 | 4.25 | 4,250
SEI | 0.1231 | 4.11 | 4,110
LCH | 0.1231 | 3.40 | 3.400
I I [
| [ i
_____________________________ |
TOTALS | 32.06 | 32,060
| | MUR&D
[ I
| |
| I
______________________________________ l
PROGRAM COSTS FOR BP ARCHITECTURE |
|
————————— |-—=-====—~=+===INV-——-———m———|
System | C50 | EX VARX |
--------- Rttt bkl ettt |
BSTS | 2.60 | 2.600 0.102 |
SSTS | 4,32 | 4.320 0.619 |
SBI | 1.10 | 1.100 0.094 |
GSTS | 0.00 | 0.000 0.000 |
MGBR | 0.00 | 0.000 0.000 |
ERIS | 0.00 | 0.000 0.000 |
TGBR | 0.00 | 0.000 0.000 |
HEDI | 0.00 | 0.000 0.000 |
CCSOIF | 1.97 | 1.970 0.301 |
SEI | 0.55 | 0.550 0.005 |
LCH | 4,91 | 4.910 0.365 |
| I |
I ! I
--------- === | |
TOTALS | 15.45 | 15.450 1.219
| |
I |
| |
| |

—— —— ——— —— ——— " —— Y — Y —— - A - - ——— — ——
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MU 47.5100
S1G 5.5027

|

|

I
BSTS | 8.000 0.757 |
SSTS | 8.120 1.642 |
SBI | 4.600 1.344 |
GSTS | 1.300 0.056 |
MGBR | 1.300 0.026 |
ERIS | 2.400 0.087 |
TGBR | 1.100 0.018 |
HEDI | 1.500 0.034 |
CCSOIF | 6.220 2.353 |
SET | 4.660 0.295 |
LCH | 8.310 0.793 |
I l
I l
-------- | =m=—m e e |

TOTALS | 47.510 2.721

|

|

I

|

—— - ———— ——— ———— ——————— T f—— ——— ] ——— T ——————————— S — ————————_ —— - ————
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Correlation Between Phases 0.50

Correlation

Between ---- Acquisition Costs -----=------ Program Costs —--=---

Programs 20% 50% 80% 20% 50% 80%
0.0 35.76 37.9 40.04 45.23 47.51 49.79
0.1 35.33 37.9 40.47 44.61 47.51 50.41
0.2 34.97 37.9 40.83 44.10 47.51 50.92
0.3 34.64 37.9 41.16 43.65 47.51 51,37
0.4 34.34 37.9 41 .46 43.26 47.51 51.76
0.5 34.07 37.9 41.73 42.89 47.51 52.13
0.6 33.82 37.9 41.98 42.56 47.51 52.46
0.7 33.58 37.9 42 .22 42 .24 47.51 52.78
0.8 33.35 37.9 42 .45 41.94 47.51 53.08
0.9 33.13 37.9 42.67 41.66 47.51 53.36
1.0 32.92 37.9 42.88 41.39 47.51 53.63
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‘v_

MUR&D SIGR&D

| ~mmmm e e s A
| System | CcvV | C50 | EX VARX
| ~=mmmm s fmmm—mmm— B ittt bttt
[ BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTS | 0.1821 | 3.80 | 3.800 0.479
| SBI | 0.2786 | 4.10 | 4.100 1.305
| CCSOIF | 0.2786 | 3.53 | 3.530 0.967
I SETI | 0.1231 | 2.91 | 2.910 0.128
| LCH | 0.1231 | 3.40 | 3.400 0.175
I | J |
I | | !
| ! I I
| | I I
I I I |
| | i I
I | | |
o e |-=—~————
TOTALS 23.14 | 23.140 1.870
J
|
I
|

MUINV SIGINV

|———— e INV-————— |
| System | C50 | EX VARX |
[ s ity | == |
I BSTS | 2.60 | 2.600 0.102 |
| SSTS | 5.40 | 5.400 0.967 |
[ SBI | 25.96 | 25.960 52,308 |
| CCSOIF | 1.99 | 1.990 0.307 |
[ SEI | 1.59 | 1.590 0.038 |
| LCH | 9.59 | 9.590 1.394 |
I I [ I
| I I [
| I I [
[ { [ |
| | I [
! I | I
| | | I
|==—==—~=- ==m—————- | == e |
TOTALS | 47.13 | 47.130 7.424

I |

| |

| I

| |




|[=———————— | =~ TOTALS---- |Correlation between Phases 0.50
|  System | EX VARX |
=== | =~—=———mm— I
i BSTS | 8.000 0.757 | PROB COSTRD COSTINV COSTTOT
[ SSTS | 9.200 2.126 | 0.1 20.75 37.63 55.95
| SBI | 30.060 61.875 | 0.2 21.57 40.90 60.88
] CCSOIF | 5.520 1.820 | 0.3 22.16 43.26 64.44
| SEI | 4.500 0.237 | 0.4 22.67 45.26 67.46
| LCH | 12.990 2.063 | 0.5 23.14 47.13 70.27
| | | 0.6 23.61 49.00 73.08
| | ! 0.7 24.12 51.00 76.10
| | | 0.8 24,71 53.36 79.66
| I | 0.9 25.53 56.63 84.59
| I |
| I |
I I |
| =======—- Rt it by I
| TOTALS | 70.270 8.299 |
| | MU SIG |
I | I
! I MU 70.2700 |
I | f

SIG 11.1851




l ________________________________________________
' |PROGRAM COSTS FOR SBI ARCHITECTURE
I
| emmmm e - | mmm e R&D---————=-
| System | cv | C50 | EX VARX
| -——=—m | === |=~=————mm—
[ BSTS | 0.1231 | 5.40 | 5.400 0.442
| SSTS | 0.1821 | 3.80 | 3.800 0.479
| SBI | 0.2786 | 4.10 | 4.100 1.305
[ GSTS | 0.1821 | 1.30 | 1.300 0.056
| MGBR | 0.1231 | 1.30 | 1.300 0.026
| ERIS | 0.1231 | 2.40 | 2.400 0.087
| TGBR | 0.1231 | 1.10 | 1.100 0.018
I HEDI | 0.1231 | 1.50 | 1.500 0.034
| CCSOIF | 0.2786 | 4,25 | 4.250 1.402
| SEI | 0.1231 | 4.11 | 4,110 0.256
[ LCH | 0.1231 | 3.40 | 3.400 0.175
I | I l
I I | I
[ === e |~——m—
TOTALS 32.66 | 32.660 2.069
|
|
I
|

R R INV-—=mmm—mmm = |
]  System | C50 | EX VARX |
| =====—=-- o= [===—mmm e |
| BSTS | 2.60 | 2.600 0.102 |
| SSTS | 5.40 | 5.400 0.967 |
| SBI | 25.96 | 25.960 52.308 |
| GSTS | 0.00 | 0.000 0.000 |
| MGBR | 0.00 | 0.000 0.000 |
| ERIS | 0.00 | 0.000 0.000 |
[ TGBR | 0.00 | 0.000 0.000 |
| HEDI | 0.00 | 0.0C0 0.000 |
| CCSOIF | 1.99 | 1.990 0.307 |
l SEI | 1.59 | 1.590 0.038 |
[ LCH | 9.59 | 9.590 1.394 |
I I | I
I | I |
=== [===wm=——- === I
TOTALS | 47.13 | 47.130 7.424

| I

I I

I |

I |
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MU 79.7900
SIG 12.0225

[——=—mmmm— | -==——=- TOTALS---- |
| System | EX VARX |
| --mmmm- RO — |
| BSTS |  8.000 0.757 | PROB  COSTRD COSTINV COSTTOT
| SSTS |  9.200 2.126 | 0.1 30.01 37.63 64.40
| SBI | 30.060 61.875 | 0.2 30.92 40.90 69.70
| GSTS |  1.300 0.056 | 0.3 31.58 43.26 73.52
| MGBR |  1.300 0.026 | 0.4 32.14 45.26 76.77
| ERIS |  2.400 0.087 | 0.5 32.66 47.13 79.79
1 TGBR |  1.100 0.018 | 0.6 33.18 49.00 82.81
| HEDI |  1.500 0.034 | 0.7 33.74 51.00 86.06
| CCSOIF |  6.240 2.366 | 0.8 34.40 53.36 89.88
| SEI | 5.700 0.393 | 0.9 35.31 56.63 95.18
| LCH | 12.990 2.063 |
I ! I
| | |
| -==mmmmm- R — !
TOTALS | 79.790 8.355

I

|

I

|




| Correlation Between Phases 0.50

| Correlation

! Between =---- Acquisition Costs --—--—=----- Program Costs -----

Programs 20% 50% 80% 20% 50% 80%

G.0 63.31 70.27 77.23 72.78 79.79 86.80
0.1 62.76 70.27 77.78 72.07 79.79 87.51
0.2 62.25 70.27 78.29 71.41 79.79 88.17
0.3 61.77 70.27 78.77 70.81 79.79 88.77
0.4 61.32 70.27 79.22 70.24 79.79 89.34
0.5 60.88 70.27 79.66 69.70 79.79 89.88
0.6 60.47 70.27 80.07 69.19 79.79 90.39
0.7 60.08 70.27 80.46 68.71 79.79 90.87
0.8 59.69 70.27 80.85 68.24 79.79 91.34
0.9 59.33 70.27 81.21 67.80 79.79 91.78
1.9 58.97 70.27 81.57 67.36 79.79 92.22
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